Product Code Database
Example Keywords: gloves -linux $69
barcode-scavenger
   » » Wiki: Joint Entropy
Tag Wiki 'Joint Entropy'.
Tag

In information theory, joint entropy is a measure of the uncertainty associated with a set of .

(2000). 9780486411477, Dover Publications.


Definition
The joint (in ) of two discrete X and Y with images \mathcal X and \mathcal Y is defined as
(2006). 9780471241959, Wiley.

\Eta(X,Y) = -\sum_{x\in\mathcal X} \sum_{y\in\mathcal Y} P(x,y) \log_2P(x,y)

where x and y are particular values of X and Y, respectively, P(x,y) is the joint probability of these values occurring together, and P(x,y) \log_2P(x,y) is defined to be 0 if P(x,y)=0.

For more than two random variables X_1, ..., X_n this expands to

\Eta(X_1, ..., X_n) =
-\sum_{x_1 \in\mathcal X_1} ... \sum_{x_n \in\mathcal X_n} P(x_1, ..., x_n) \log_2P(x_1,

where x_1,...,x_n are particular values of X_1,...,X_n, respectively, P(x_1, ..., x_n) is the probability of these values occurring together, and P(x_1, ..., x_n) \log_2P(x_1, is defined to be 0 if P(x_1, ..., x_n)=0.


Properties

Nonnegativity
The joint entropy of a set of random variables is a nonnegative number.

\Eta(X,Y) \geq 0

\Eta(X_1,\ldots, X_n) \geq 0


Greater than individual entropies
The joint entropy of a set of variables is greater than or equal to the maximum of all of the individual entropies of the variables in the set.

\Eta(X,Y) \geq \max \left\Eta(X),\Eta(Y)

\Eta \bigl(X_1,\ldots, X_n \bigr) \geq \max_{1 \le i \le n}
   \Bigl\{ \Eta\bigl(X_i\bigr) \Bigr\}
     


Less than or equal to the sum of individual entropies
The joint entropy of a set of variables is less than or equal to the sum of the individual entropies of the variables in the set. This is an example of . This inequality is an equality if and only if X and Y are statistically independent.

\Eta(X,Y) \leq \Eta(X) + \Eta(Y)

\Eta(X_1,\ldots, X_n) \leq \Eta(X_1) + \ldots + \Eta(X_n)


Relations to other entropy measures
Joint entropy is used in the definition of conditional entropy

\Eta(X|Y) = \Eta(X,Y) - \Eta(Y)\,,

and

\Eta(X_1,\dots,X_n) = \sum_{k=1}^n \Eta(X_k|X_{k-1},\dots, X_1).

For two variables X and Y, this means that

\Eta(X,Y) = \Eta(Y) + \Eta(X|Y) = \Eta(X) + \Eta(Y|X).

Joint entropy is also used in the definition of mutual information

\operatorname{I}(X;Y) = \Eta(X) + \Eta(Y) - \Eta(X,Y)\,.

In quantum information theory, the joint entropy is generalized into the joint quantum entropy.


Joint differential entropy

Definition
The above definition is for discrete random variables and just as valid in the case of continuous random variables. The continuous version of discrete joint entropy is called joint differential (or continuous) entropy. Let X and Y be a continuous random variables with a joint probability density function f(x,y). The differential joint entropy h(X,Y) is defined as

h(X,Y) = -\int_{\mathcal X , \mathcal Y} f(x,y)\log f(x,y)\,dx dy

For more than two continuous random variables X_1, ..., X_n the definition is generalized to:

h(X_1, \ldots,X_n) = -\int f(x_1, \ldots,x_n)\log f(x_1, \ldots,x_n)\,dx_1 \ldots dx_n

The is taken over the support of f. It is possible that the integral does not exist in which case we say that the differential entropy is not defined.


Properties
As in the discrete case the joint differential entropy of a set of random variables is smaller or equal than the sum of the entropies of the individual random variables:
h(X_1,X_2, \ldots,X_n) \le \sum_{i=1}^n h(X_i)

The following chain rule holds for two random variables:

h(X,Y) = h(X|Y) + h(Y)
In the case of more than two random variables this generalizes to:
h(X_1,X_2, \ldots,X_n) = \sum_{i=1}^n h(X_i|X_1,X_2, \ldots,X_{i-1})
Joint differential entropy is also used in the definition of the mutual information between continuous random variables:
\operatorname{I}(X,Y)=h(X)+h(Y)-h(X,Y)

Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs
1s Time